
Automated recovery of data-intensive jobs in D0 and CDF using SAM

A. Baranovski
�

, V. Bartsch
�

, D. Benjamin
�

, K. Genser
�

E. Lipeles
�

, A. Lyon
�

, I. Sfiligoi
�

,
�

Fermi National Accelerator Laboratory,
�

University College London,
�

University of California,
�

Duke University

Abstract
SAM [1] is a data handling system that provides the Fer-

milab HEP experiments D0, CDF and MINOS with the
means to catalog, distribute and track the usage of their
collected and analyzed data. SAM serves petabytes of data
per year to physics groups performing data analysis, data
reconstruction and simulation at various computing centers
across the world.

Reliability issues in the user analysis or production are
important concerns to address in the SAM project. The
SAM datahandling and its interface have been used to de-
tect failures at any level of the data intensive jobs.

In this paper the flow of a typical analysis job and pos-
sible error cases at the example of the CDF experiment are
presented and a method to automatically recover from this
failures is described. We present an automated method that
uses SAM data handling to formalize distributed data anal-
ysis by defining a transaction based model of the physics
analysis job work cycle to enable robust recovery of the
unprocessed data.

INTRODUCTION
Given the volume of the detector data, a typical physics

analysis job consumes terabytes of information during sev-
eral days of running at a job execution site. At any stage of
that process, non systematic failures e.g. failures of file de-
livery may occur, leaving a fraction of the original dataset
unprocessed. To ensure convergence to completion of the
computation request, a facility user has to employ a proce-
dure to identify pieces of data that need to be re-analyzed in
a manner that guarantees completeness without duplication
in the final result.

It is common that these issues are addressed by analyz-
ing the output of the job. Such an approach is fragile, since
it depends critically on the (changeable) output file format,
and time-consuming. The approach that is reported in this
article saves the users time and ensures consistency of the
results.

ANALYSIS FLOW
The features of the automated recovery system are intro-

duced using the analysis flow of CDF as an example. The
typical Data Aquisiton and Analysis Flow of the experi-
ment CDF is shown in Fig. 1.

The Tevatron, the reconstruction farms and the remote
Monte Carlo production are producing data. The Tevatron
runs at a crossing rate of 1.7 MHz, after the trigger about

Figure 1: CDF Data Acquisition system and Analysis Flow

75 Hz are accepted. The reconstruction farm reconstructs
the Tevatron data. The data are stored on tape into the en-
store system which has a disk frontend using dCache [2].
In total about 1 PB user data are on tape for CDF and about
170 TB of disks of the dCache system are used, so that data
used frequently can be accessed from disk.

The stored data is read by users using the SAM data han-
dling system. The analysis of the data can be performed
either at the Fermilab analysis farms or at the remote com-
puting facilities. Both ways can benefit from distributed
SAM dahandling services independantly deployed at Fer-
milab or at perticipating resource providers.

For example, the central analysis farm (CAF) [3] is lo-
cated at Fermilab. In addtion , around the world, there
are about 10 decentralized analysis farms (DCAF) that
are using the same mechanisms as the CAF. Both CAF
and dCAFs datahandling needs are successfuly satisfied by
SAM . As of the time of writing the CAF/DCAFs have a
CPU power of 2.6 M SPECInt2k at Fermilab and 2.6 M
SPECInt2k offsite. The DCAFs have 78 TB of storage.
Several remote computing facilities e.g. at Karlsruhe and
Oxford have not installed a DCAF, but neveretheless have
been levereging SAM service independatly. Such facilities
are typically used by the user community local to the SAM
deployments.

Typically , the analysis farms are used to submit jobs re-
qiuring lots of CPU resources and are the batch (non inter-
active) environments. In the batch environment, it is often
a chalange to track and recover from failures due to mas-
sive amount of user activity that may hinder the problem
diagnosis and recovery. Our approach is to focus on ease
of recovery from the non systematic failures while leaving
the reliability issues of the execution environment (CAF)

to its respective service providers. jobs.

JOB HANDLING AT THE CAF
In order to explain the recovery mechanism more de-

tails about the job handling at the CAF need to be given.
The left hand side of Fig. 2 shows the job handling of the
CAF. User submit jobs to the CAF using a graphical or
command line interface. They provide information about
the job which needs to be executed, the parallization of the
job, the data handling system used and the data needed for
the job. The data needed for the job is grouped in data
sets which match requirements on the data e.g. run num-
bers, time period, physical content of the data. In case of
jobs which do not need input data no data handling sys-
tem needs to be chosen. The jobs at the CAF start with
a start section (see Fig. 2) which sets the environment for
the job. In case the SAM data handling system is chosen a
SAM project is started and the data sets are translated into
a list of files. The SAM project is monitored by the SAM
database throughout the job execution and is unique for the
job. The CAF start section sends the job to worker nodes
depending on the number of parallel executions specified
by the user. Throughout the execution of the job on the
worker nodes, the SAM database monitors the file delivery.
The end section closes the SAM project and delivers the
output files.

Figure 2: Job handling of the CAF and monitoring of the
SAM database connected to the job before automatic re-
covery.

ERROR CASES
During operation of the CAF several error cases have

been observed. Those can be divided into problems of
file delivery (which is covered by the recovery based on
consumption of files), problems with the job sections on
the worker nodes and problems at the end section of files.
Typically the problems with job sections are CAF section
restarts, for example due to reboot of a worker node or
due to any other hardware failure. The restarts of job

sections cause a loss of data files because the files are
already registered as consumed with the SAM database.
This loss is very likely to be unnoticed by common
users. The problems of the end section are most likely
output retrieval failures, which could be due to full disks,
authentification problems or wrongly specified output
destinations. Except for the file delivery non of these
issues are tracked by the SAM database, however they
are monitored by the CAF software. Statistically about
3% of all jobs have a problem with files retrievals. 0.4%
of all sections get restarted. The jobs have about 70 sec-
tions on average. 3% of the jobs fail during the end section.

SAM BOOKKEEPING MODEL

SAM is a comprehensice solution that enables variety
of data management and data access use cases tailored for
the HEP application. In addition to that , SAM provides
means to monitor the consumption and enable mining of
data that has been requested and subsuqently served to the
user. Data management, data bookeeping and mining use-
cases are implmenented using a unifed model that covers
most sofisticates needs of the end user application. The ba-
sic component of that model is SAM project. SAM project
is an entity that describes and registers computational re-
quest to SAM datahandling. This request typically con-
tains such parameters as dataset name , name of the station
(SAM datahandling domain), name and the version of the
analysis application. That latter is important to bind re-
quested data to the type/version of the analysis been used.
The lifetime of the SAM project is defined by how long
the computational request persists in the execution envi-
ronment. On the course of its lifetime this state changes
in responce to user analysis interface calls to SAM as well
as to external factors such as file delivery or error notifica-
tions. At the same time , the state of the SAM project is
recorded in the persistent storage. The principal ability to
persistenly store the history of the SAM project allows to
subsequently mine and recover processed or unprocessed
data.

There are two types of objects that provide persistency
within SAM project state. These are “the process” and “the
file”. Picture here : SAM project contains processes. Pro-
cess has node. Files belong to processes.

The process object declares SAM application constraints
that define set of storages that application wants to re-
ceieve data from. File arrival events from these storages are
recorded in the context of the respective “process”. And ,
similarly to the SAM project, in addition to its own state ,
the process object aggregates states of the all the files that
it happens to own.

“the file” object aggregates the state of the file with re-
spect to the application. Presently , SAM supports 3 differ-
ent states for this type of the object : delivered, opened and
consumed.

The premise of the article is based on ability of the user

application running in the exprement specific envirobments
to manipulate persistent states of the SAM project, process
and file to record sufficient amount information that allows
to recover any portion of the user job.

EXECUTION ENVIRONMENT.
INTERFACE TO SAM DATAHANDLING

AND BOOKKEEPING
As was explained in the previous paragraphs, CAF start

section is first user code that is been executed. The code
bears responsability to initialize nessasary environment
common for all subsequent sections (paralelized jobs). If
user selects SAM datahandling ,the CAF start section is
the section start starts SAM project. In CAF environment
, SAM project is the portal to the datahandling universe
that helps managing data delivery to paralel applications
(sections) in a manner files are received in random yet non
overlapping sets. The excact destribution of data among
jobs is computed based on the most optimal delivery time.

Each job , in turn , defines itself to SAM by register-
ing ”the process”. The registration step is permanent and
is used to enable data streaming to the applicatin as well
as bind the success status of the job (and the CAF sec-
tion herein) with status of the SAM project process. In the
article We refer this registration step as the start of the data-
handling transaction. The transaction that tracks statuses of
participating file delivery and file processing events. The
events that at the same time are independatly reflected in
the SAM project file context object.

Figure 3: Job handling of the CAF and interfaces to the
SAM database for the automatic recovery.

RECOVERY
Both execution and datahandling environments are the

two major contributing factors to the success rate of the
computational request. Thefore , both has to work tight

to enable sufficient input of the information to detect and
recover from failures on all levels. SAM records file deliv-
ery and consumption history and provides means to create
and end datahandling transactions that can encompas the
scope of the data intensive jobs. By integrating datahan-
dling and jobs handling environments it is posisble to de-
fine the scope of the application beyond the analysis itself.
For example in CAF environment, these steps are all parts
of the job scope trackable by SAM datahandling transac-
tions : 1) Staging job executable. 2) Staging mutiple input
files. 3) Analysis. 4) Verification. 5) Output storage. These
stepts are independant and equaly important components
in the overall success of the job. Which is why , irrespec-
tive of how much data has been analyzed by the failed ap-
plication , such data has to be rolled back and re-analyzed
again. The SAM process transaction mechanism is efficient
way to roll back files that were delivered and consumed but
have not contribited to the final results. The data that would
be mistakenly rejected based on sole consumption history.
Neveretheless , file delivery/consumption history is still im-
portant piece of information to answer the question of what
files have not been consumed at all.

The success status of the transaction as set by the exe-
cution environment joined with the SAM project file con-
sumption history allows to formulate recovery job that
always complements user’s initial computational request
without duplication in the output.

Figure 4: Job handling of the CAF and interfaces to the
SAM database for the automatic recovery.

As pointed out it is reasonable to incorporate the moni-
toring of the experiment specific software into the recovery.
This approach is depicted in Fig. 3.

The advantage for the user is that the success of a job
is immediately visible after completion and a recovery is
accessible without much user interaction. Compared to the
parsing of output files the new approach is less error-prone,
much faster and independent of the output format.

AUTOMATIC RECOVERY

CONCLUSION
The described automatic recovery incorporates the mon-

itoring of the experiment specific software, in this case the

analysis farms of CDF, and the monitoring of the SAM data
handling system. The bookkeeping is completely trans-
parent to the user and more effective than any user imple-
mented recovery.

REFERENCES
[1] http://d0db-prd.fnal.gov/sam/

[2] http://dcache.desy.de/

[3] http://www.cdfcaf.fnal.gov

